“大数据与人工智能的发展,为‘失眠’状态的监测提供了技术手段。但要解决失眠问题,就必须以物联网和人工智能等新兴技术为手段,以医工深度融合的方式,提出解决方案。”3月25日至26日,香山科学会议在北京召开,北京大学信息科学技术学院副教授黄安鹏在会上说道。
此次会议主题为“面向睡眠健康的智能感知与计算”,与会学者各抒己见,讨论热烈,但对我国智能睡眠医学研究现状存在共识——快速增长的睡眠健康需求与我国落后的睡眠医学现状之间形成突出矛盾。
西南大学电子信息工程学院教授张远说,矛盾体现在多方面。如,便携的微扰睡眠监测手段匮乏,用于临床诊断的睡眠障碍生物标志物亟待挖掘,拥有自主知识产权的睡眠数据分析模型与核心算法尚未建立等。
缺乏标准化的睡眠大数据
中国睡眠研究会发布的《中国睡眠诊疗现状调查报告》显示, 我国约有1/3人口存在不同程度的睡眠障碍,而全国三万多家医院中仅有3000多家建立了睡眠监测室。
睡眠质量评估是预防和治疗睡眠障碍的先决条件。目前临床上惯用的监测手段是多导睡眠监测仪(PSG)。东南大学仪器科学与工程学院教授刘澄玉说:“PSG设备本身导联较多、操作复杂、舒适性差,价格昂贵,并在很大程度上影响睡眠,在医院外的应用场景受到极大限制。”
虽然PSG是评估睡眠质量、诊断睡眠障碍疾病的“金标准”,但PSG可能无法全面准确反映真实的睡眠质量。与会专家提出,要探索非接触式睡眠监测技术、微扰或无扰便携式睡眠监测技术等,这要求在睡眠监测的机理机制技术规范、判断标准和临床应用实践指南方面尽快形成共识。
北京大学人民医院韩芳教授指出,睡眠监测获得的大数据包括脑电、心电、眼动、血氧、呼吸气流等十几种参数,这些数据在睡眠疾病诊断领域具有重要应用。
“但目前尚缺乏优质的睡眠大数据。”首都医科大学心理与精神卫生学院副教授王长明告诉科技日报记者,由于采集睡眠数据的设备及参数配置不同等因素,睡眠数据质量层次不齐。
正因为如此,精准解析多模态且具有异构性的睡眠监测大数据,进而提供高效、鲁棒性强、临床可解释性强的数据分析算法依然是智能睡眠医学领域的难题。
“我认为要建立标准化的国人睡眠数据库,通过多中心、精标注优质数据的模型训练作为医生辅助诊断的可靠有效方式。”王长明表示,这有赖于跨学科跨领域的合作,需要政府主导、行业牵头、企业参与,是一条漫长的探索之路。
医学人工智能助力解决睡眠难题
韩芳表示,临床睡眠医学逐渐从各学科的边缘领域交叉融合发展为独立学科。“睡眠医学及研究的进一步进展,有赖于生物医学工程技术及人工智能技术的发展。”
“利用快速发展的人工智能方法,应该从智能睡眠分期方面的研究拓展开来。”复旦大学信息科学与工程学院教授陈炜说,“如探索典型睡眠障碍的电生理机制。近年来被忽视的特征工程在智能睡眠医学领域应该被重新审视。”
“5G商用化的普及必将为远程主动睡眠健康新模式的开展提供机遇。”韩芳说。
无论是发展医学人工智能,研发更便携的可穿戴设备,还是挖掘用于临床诊断的睡眠障碍生物标志物,亦或是建立自主知识产权的睡眠数据分析模型,最终都是为了用科学手段保证睡眠健康,与会者倡导探索非药物的身心干预原理与方法。
张远认为,对睡眠的身心干预分为被动干预和主动干预方法。前者包括音乐疗法、蓝光疗法、电磁疗法等;后者包括冥想、运动、改善睡眠习惯等。