cckkk123 |
2018-01-11 16:00 |
5-1“罗素是教皇” 从单纯的逻辑上来讲,荒谬的假设可以推论出任何荒谬的结论,哪怕推理过程无懈可击。有人曾经让罗素证明从“2+2=5”推出“罗素是教皇”。罗素证明 如下: 由于2+2=5,等式的两边同时减去2, 得出2=3;两边同时再减去1, 得出1=2;两边移位, 得出2=1。 教皇与罗素是两个人,既然2=1,教皇和罗素就是1个人,所以“罗素就是教皇”。 这个荒谬的结论,就是由一个荒谬的假设引发出来的。
5-2“亚里斯多德是类概念” 这是严格按照三段论推导出来的结果。请看: (1)亚里斯多德是哲学家, (2)哲学家是类概念, (3)所以,亚里斯多德是类概念。 亚里斯多德(Aristotle,公元前384-前322)是希腊大哲学家和天文学家,曾就学于柏拉图,继承苏格拉底以来的希腊哲学而自成体系,在西方的影响最大。他系统总结了三段论法原理,奠定了逻辑思维的基础。 上面这个结论恐怕连亚里斯多德本人也不会认同。因为其中蕴含了一个“语义悖论”。因为语句(1)中的哲学家和语句(2)中的“哲学家”不在一个层次上,前者是对象概念,后者是元概念。两个前提内涵不一致,结论就荒谬了。从根本上来讲这不是一个语言或语法问题,而是一种逻辑错误。自塔尔斯基在30年代提出“语言层次论”来,就一直受到人们的关注。
5-3自相矛盾 这个例子正相反,是一个因为前提不相容而推不出结论的经典例子。 《韩非子?势难》介绍了这个预言:有一个同时卖矛和盾的人。他先夸他的盾 最坚固,无论什么东西都戳不破;接着又夸他的矛最锐利,无论什么东西都能刺透。旁人问他:如果用他的矛来刺他的盾会有什么结果,他回答不上来,因为两者相互抵触。这是一个既不可以同时为真,也不可以同时为假的命题。前提出现矛盾,也就无法推出结论。
5-4纸牌悖论 纸牌悖论就是纸牌的一面写着:“纸牌反面的句子是对的。”而另一面却写 着:“纸牌反面的句子是错的。”这是由英国数学家Jourdain提出来的。我们同样推不出结果来。它最简单的形式是:
5-5“悖论元” 下面这句话是对的, 上面这句话是错的。 这也是一个有名的悖论,叫乔丹真值(Jourdain Truth-Va lue)悖论。以上这三个例子基本属于一个类型。
5-6“先有鸡,还是先有蛋?” 这个互为因果的循环推理本身无法自我解脱,需要实际的考证,如考古学和生物学的研究成果等,才能打破这一循环。 它里面也隐含着一个不相容的前提假设:“鸡是由蛋孵化出来的,蛋又是由鸡生出来的。”单独来看都符合日常观察,但合在一起却是一对不自洽的假设。
5-7“如果说上帝是万能的,他能否创造一块他举不起来的大石头?” 这是一个流传很广的悖论。如果说能,上帝遇到一块“他举不起来的大石头”,说明他不是万能;如果说不能,同样说明他不是万能。这是用结论来责难前提。 这个“全能者悖论”的另一种表达方法是:“全能的创造者可以创造出比他更了不起的事物吗?”
5-8“你会杀掉我” 这个故事有几个版本。大意是说:一夥强盗抓住了一个商人,强盗头目对商人说:“你说我会不会杀掉你,如果说对了,我就把你放了;如果说错了,我就杀掉你。”商人一想,说:“你会杀掉我。”于是强盗把他放了。 推理一下:如果强盗把商人杀了,他的话无疑是对的,应该放人;如果放人,商人的话就是错的,应该杀掉,又回到前面的推理,这是一个悖论。聪明的商人找到的答案使强盗的前提互不相容。
5-9“你会吃掉我的孩子” 这个例子与上面的例子逻辑同构。 一条鳄鱼抢走了一个小孩,它对孩子的母亲说:“我会不会吃掉你的小孩?答对了,孩子还给你;答错了,我就吃了他。”我们已经知道了母亲的答案:“你会吃掉我的孩子。”
5-10两小儿辩日 这是《列子》里的一则预言:孔子遇到两个小孩在争论,一个说:“日出时,太阳距离我们近,中午距离我们远。因为日出时太阳大得像车轮,中午小得像盘子。这不正是近大远小吗?”另一个却说:“日出时,太阳距离我们远,中午距离我们近。因为日出时我们不觉得热,中午却非常热。这不是近热远凉吗?”孔子不能答。 这是今天的一个科学常识问题,但两千多年前的人并不知道。从逻辑上看,这里有“近大远小”、“近热远凉”两个测度的标准。在回答问题以前,应该搞清楚哪个标准更准确,或者都不准确。
5-11爱瓦梯尔应不应该付学费? 传说古希腊人爱瓦梯尔(Eulathlus)向普洛太哥拉斯学习辩术(另有一说是学习法律)。他们的约定是:爱瓦梯尔先付一半学费,另一半学费等学成后在第一场辩护胜诉时再付,如果败诉,则学费不必再交。 但是爱瓦梯尔毕业以后,没有担任辩护工作,不打算交另一半学费。 普洛太哥拉斯准备告他,说:“如果我胜诉了,法官会判你付我学费;如果我败诉,根据约定你还是要付我学费。总之要付。”。爱瓦梯尔则说:“如果我胜诉,法官也会判我不付学费;如果我败诉,按照约定我也不必付另一半的学费。总之不付。”(见王九逵《逻辑与数学思维》) 这个问题反过来看,逻辑上也同样成立。如果爱瓦梯尔先说:“如果你告我,我就可以不付学费了。”普洛太哥拉斯也可以用同样的方式来反驳。如此争论下去不可能有结果。 这里的问题就是他们双方都默认“约定”和“判决”可以同时而且等效地来解决他们的纠纷,这是他们共同的前提。从逻辑上化解它们的办法就是选择其中的一个进行最终裁决。
5-12梵学者的“预言” 和上面的例子完全类似,这是一个梵学者(印度的预言家)的女儿用悖论来为难她的父亲的故事。 女儿在纸上写了一行字压在水晶球的下面。然后对父亲说:纸上写的可能发生,也可能不发生。如果你预言会发生就写“是”,反之就写“不”。 梵学者写下他的预言“是”,女儿拿出水晶球下面的纸,念到:“你将写一个‘不’字。”学者错了。实际上,他写个“不”字,也会错,因为预言已经发生了。 女儿的“不”有两重含义,它一方面与字面上的“是”相反,另一方面与实际上的“不”相反,双重标准。由于没有事先界定,梵学者也可以反过来和他的女儿作无限的争论。
(六)由权变遭遇的悖论
6-1阿雷斯(Allais)悖论 下面两个式代表你将获得的收入,X是一个不定的量,你将选择哪一个,S1还是S2? (1)S1=0?9X+$100,000 (2)S2=0?89X+$250,000 显然,最好的选择取决于X是多少。 当X=$15,000,000,S1=S2=$13,600,000 当X〉$15,000,000,S1〉S2 当X〈$15,000,000,S1〈S2 这个悖论对决策理论有较大影响。
6-2纽卡(Newcombs)悖论 这也是决策理论中的一个。有两个盒子A和B放在桌子上: A是透明的,可以看见里面有$1,000, B是不透明的,上面写着或者是$1,000,000,或者是0。 你可以在下面的两种选择中,只能取一个(1)或(2): (1)只选择B (2)A和B两个都选 你会作出什么选择? 有一个教授曾经作过一个实验:他让1000个学生选,其中999个学生选择了(1),只有1个学生选择了(2)。而这999个学生一人只获得$1,000,而那1个学生却获得了$1,000,000。为什么呢?因为这个教授事先已经作了预测,并作出这样的安排: 如果选(2)B盒子里就不放任何一分钱, 如果选择(1)B盒子里就放$1,000,000。 而这个教授的预测只有千分之一的失误。如果你已经知道了这个结果,重新再选,会选哪一项。注意,这一回,教授可能又作出了新的预测。
6-3谷“堆”的定义 如果1粒谷子落地不能形成谷堆,2粒谷子落地不能形成谷堆,3粒谷子落地也不能形成谷堆,依此类推,无论多少粒谷子落地都不能形成谷堆。 从真实的前提出发,用可以接受的推理,但结论则是明显错误的。它说明定义“堆”缺少明确的边界。它不同于三段论式的多前提推理,在一个前提的连续积累中形成悖论。从没有堆到有堆中间没有一个明确的界限,解决它的办法就是引进一个模糊的“类”。 这是连锁(Sorites)悖论中的一个例子,归功于古希腊人Eubulides,后来的怀疑论者不承认它是知识。“soros”在希腊语里就是“堆”的意思。最初是一个游戏:你可以把1粒谷子说成是堆吗?不能;你可以把2粒谷子说成是堆吗?不能;你可以把3粒谷子说成是堆吗?不能。但是你迟早会承认一个谷堆的存在,你从哪里区分他们? 它的逻辑结构: 1粒谷子不是堆,如果1粒谷子不是堆,那么,2粒谷子也不是堆;如果2粒谷子不是堆,那么,3粒谷子也不是堆; --- 如果99999粒谷子不是堆,那么,100000粒谷子也不是堆; |
|